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TaiChiNet: Negative-Positive Cross-Attention
Network for Breast Lesion Segmentation in

Ultrasound Images
Jinting Wang, Jiafei Liang, Yang Xiao, Joey Tianyi Zhou, Zhiwen Fang, Feng Yang

Abstract— Breast lesion segmentation in ultrasound im-
ages is essential for computer-aided breast-cancer diag-
nosis. To improve the segmentation performance, most
approaches design sophisticated deep-learning models by
mining the patterns of foreground lesions and normal
backgrounds simultaneously or by unilaterally enhancing
foreground lesions via various focal losses. However, the
potential of normal backgrounds is underutilized, which
could reduce false positives by compacting the feature
representation of all normal backgrounds. From a novel
viewpoint of bilateral enhancement, we propose a negative-
positive cross-attention network to concentrate on normal
backgrounds and foreground lesions, respectively. Derived
from the complementing opposites of bipolarity in TaiChi,
the network is denoted as TaiChiNet, which consists of
the negative normal-background and positive foreground-
lesion paths. To transmit the information across the two
paths, a cross-attention module, a complementary MLP-
head, and a complementary loss are built for deep-layer
features, shallow-layer features, and mutual-learning su-
pervision, separately. To the best of our knowledge, this
is the first work to formulate breast lesion segmentation
as a mutual supervision task from the foreground-lesion
and normal-background views. Experimental results have
demonstrated the effectiveness of TaiChiNet on two breast
lesion segmentation datasets with a lightweight architec-
ture. Furthermore, extensive experiments on the thyroid
nodule segmentation and retinal optic cup/disc segmenta-
tion datasets indicate the application potential of TaiChiNet.
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Fig. 1. The motivation of the negative-positive cross-attention network.
To reduce the ambiguity produced by intricately comparable patterns
between foreground lesions and normal backgrounds, separate pattern
mining of the foreground and background would be essential. A lesion
region is marked by the red circle, while a distracted region is indicated
by the blue circle.

Index Terms— Negative-positive cross-attention, Breast
lesion segmentation, Mutual learning, Ultrasound images.

I. INTRODUCTION

BREAST cancer is one of the dreadful diseases that poses
a grave danger to the health and lives of women [1].

Early detection of breast cancer can lower mortality by up to
20% [2], [3]. Automatic high-quality segmentation of breast
lesions is a crucial step in computer-aided diagnosis (CAD)
of breast cancer [4], and can be characterized as a pixel-level
binary classification problem in which some pixels indicate
lesions and others represent normal backgrounds. However, the
segmentation performance is often weakened due to intricate
ultrasonic patterns, speckle noise, and shadows.

With the goal of improving the segmentation performance,
numerous researchers concentrate on developing an elegant
model by simultaneously mining patterns of foreground le-
sions and normal backgrounds using global [5]–[7] or lo-
cal [8]–[10] attention features. Due to the similarity of patterns
between foreground lesions and normal backgrounds, the
confusion in feature representation is hard to avoid. It often
degrades the segmentation performance under the sensitivity
attribute due to the class imbalance problem. To handle this
problem, some approaches [11]–[15] pay more attention to
foreground lesions by labeling the lesions as 1, and employing
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various 1-label focal losses (e.g., dice loss). The methods that
focus on foreground lesions unilaterally obtain an increase in
true positives in the lesion foreground but also lead to an
increase in false positives in the normal background, which
includes distracted regions.

To alleviate the aforementioned issues, an alternate per-
spective is the bilateral enhancement of foreground lesions
and normal background, followed by cross aggregation. Given
supervision (e.g., dice coefficient loss) focusing on the 1-label
category, as seen in Fig. 1, the foreground-lesion path and the
normal-background path get features with varying degrees of
bias. For clarity, the features offered by 1-label supervisions of
foreground lesions and normal backgrounds are distinguished
as the positive and negative parts, respectively. Specifically,
the positive part of the foreground-lesion path can more
effectively highlight the red-circled lesion region than the
negative part of the normal-background path. However, a
similar background region (circled in blue) close to the red-
circled lesion also elicits a strong feature response. In contrast,
the normal-background path compacts the feature of the blue-
circled region with that of other backgrounds. Obviously,
the diversified features provide complement potential across
the channels of the two paths. This observation offers the
opportunity to improve segmentation performance via cross-
information interaction.

Following the motivation of a bilateral enhancement, we
formulate breast lesion segmentation as a mutual supervision
task between the negative normal-background path and the
positive foreground-lesion path. To mimic the mutual super-
vision task [16], a negative-positive cross-attention network
designated TaiChiNet,1 is proposed via a cross-attention mod-
ule and a complementary head. TaiChiNet consists of two
U-Nets, which mine the patterns of foreground lesions and
normal backgrounds, respectively. Between the deep layers of
two U-Nets, a cross-attention module is designed to transfer
the information across deep semantic channels. Following
the decoded features of two U-Nets, a complementary head
with multiple interactive MLPs is further introduced to refine
the shallow features. Moreover, to improve the feature rep-
resentation under mutual supervision, a complementary loss
between the negative and positive paths is offered to deliver
the bilateral complementary information on top of traditional
segmentation constraints, where the dice loss focuses primarily
on the unilateral enhancement. Finally, inspired by the efficacy
of gradually difficulty-level learning [18] in various computer
vision fields [19]–[21], we develop an easy-to-hard learn-
ing strategy to direct the model’s attention to incrementally
difficulty-level regions throughout the training phase of breast
lesion segmentation.

The source code of this work is published online.2

The main contributions of this article are as follows.
• Aiming to improve segmentation performance by increas-

1TaiChi is an alternating principle of bipolarity (i.e., Yin and Yang) in
Chinese philosophy [17]. Yin and Yang are not absolutes or opposing forces
but rather complementing opposites [17]. TaiChiNet is the name of our
network since it is inspired by the complementing opposites of negative-
positive bipolarity.

2Code is available at https://github.com/beria-moon/TaiChiNet

ing true positives in the lesion foreground while restraining
false positives in the normal background, a negative-positive
cross-attention network is proposed for breast lesion segmen-
tation. To the best of our knowledge, it is the first work
of forming breast lesion segmentation as a mutual learning
task via bilateral interaction between foreground lesions and
normal backgrounds.

• In an effort to transmit information between foreground le-
sions and normal backgrounds in the mutual learning task, we
design a cross-attention module, a complementary head, and
a complementary loss for deep-layer features, shallow-layer
features, and supervision, respectively. To simultaneously fuse
deep-layer features and restrain information redundancy, we
build a channel-to-spatial cross-attention module C2-attention,
which is different from the traditional cascaded channel and
spatial attention.

• A pixel-level easy-to-hard learning strategy is provided
to progressively improve the feature representation using the
same training data and easy-to-hard supervision in order to
resolve the varying segmentation difficulties among pixels
within foreground lesions.

The remainder of this article is organized as follows. The
related work is introduced in Sec. II. Then,

TaiChiNet and the objective function are detailed in Sec.
III and IV, respectively. Experiments and discussions are
conducted in Sec. V. Sec. VI concludes the whole paper.

II. RELATED WORK

Significant advances have been made in breast lesion seg-
mentation during the last few decades. In this section, we first
go through the recent techniques for segmenting breast lesions.
Then, relevant research studies investigating the complemen-
tary information of the background are summarized.

A. Breast Lesion Segmentation Methods in Ultrasound
Images

Breast lesion segmentation in ultrasound images is challeng-
ing due to the speckle noise, shadows, low contrast, ambiguous
boundaries, and variances in lesion shape and size. It has
evolved tremendously because of the extensive deployment of
deep learning techniques. Numerous medical image segmen-
tation tasks have demonstrated the benefits of including the
attention mechanism in the networks. Some researchers [5]–
[7] attempt to incorporate the attention mechanism into their
model to improve breast lesion segmentation. By combining a
boundary detection module, a spatial attention module, and
a channel attention module, Xue et al. [5] build a global
guidance network for breast lesion segmentation. A hybrid
adaptive attention module is applied to replace the traditional
convolution operation in [6], which consists of a channel
attention block and a spatial attention block. To enhance the
feature representation ability, a dual-attention that combines
channel attention and lesion attention is proposed in [7]. It
is undeniable that non-local features obtained by the attention
mechanism are useful for the model to learn the discriminative
features of the lesion. However, there are some distant pixels
in the backgrounds that have an appearance similar to the
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Fig. 2. Architecture of TaiChiNet, where ”+” denotes element-wise addition and ”Ψ” means complement operation as (12). TaiChiNet consists
of two sub-network U-Nets, a cross-attention module, and a complementary head with two MLPs. Besides the traditional segmentation losses, a
complementary loss is further designed for mutual supervision.

breast lesions, and incorporating these pixels in the long-term
features may mislead the model to incorrectly classify these
pixels as lesions.

Enlarging the receptive field by dilated convolutions, pool-
ing operations, or fusing multi-level features also is a powerful
tool to capture more lesion-related semantic features. Dilated
convolutions are applied in the deeper layers to obtain a
large respective field that benefits lesion separation from the
background [8]. A dilated semantic segmentation network is
proposed to segment the breast lesion by using progressively
larger dilatations in each succeeding convolution layer in
[10]. By fusing features from various scale levels, Li et al.
[9] build a multi-scale fusion U-Net to obtain features with
multiple receptive fields. Similarly, a feature-compression-
pyramid network (FCP-Net) is proposed to integrate the multi-
level features in [22]. Shareef et al. [23] apply two encoders
to extract and fuse image context information at different
scales. Enlarging the receptive field would help to capture
more lesion-related semantic features. However, it only takes
into account the inter-dependencies among spatial domains,
and its capability will be limited when it deals with ambiguous
boundaries.

The above-mentioned attempts have advanced performance,
but they are still inadequate to address the confusion in the
backgrounds brought by speckle noise or shadows because of
the underutilized background information.

B. Foreground-background Integration Segmentation
In the field of video object segmentation, researchers have

extensively investigated the use of background information to
improve the accuracy of foreground segmentation. They have
focused on resolving issues such as dynamic backgrounds,
sudden illumination changes, and the influence of shadows
[24]–[27]. Yang et al. [24] tackle inaccuracies in foreground-
specific features by regularizing them using background atten-
tion maps generated through background-aware pooling [25],
resulting in improved foreground discrimination. In the work
conducted by [26], a generative adversarial network is trained
using synthetic paired photo-realistic images. This network
is capable of disentangling an image into its foreground and
background components, therefore reducing background noise
and enhancing the accuracy of foreground segmentation. In

[27], a noteworthy strategy involved using an auto-encoder to
approximate the background noise. This estimation was then
used as pixel-wise uncertainty to adaptively alter the threshold
for generating the foreground segmentation mask. However,
such research is scarce in medical image segmentation. For the
segmentation of magnetic resonance (MR) images, Sauvalle
et al. [28] propose a multi-task network to predict both
the background and foreground simultaneously. Subsequently,
they used the background prediction to enhance the rough
foreground in a multi-stage process. These efforts increase
the accuracy of foreground segmentation by using background
information to unilaterally enhance the representation of the
foreground. Ning et al. [29] use a method called the coarse-
to-fine technique to improve the representations of foreground
and background. They do this by including low-level and high-
level saliency maps in a human-in-the-loop fashion. Differ-
ently, our proposed method achieves bilateral improvement
in the representation of both foreground and background by
exploiting the complementary information contained in the
original image in an end-to-end paradigm.

III. NEGATIVE-POSITIVE CROSS-ATTENTION NETWORK

To accurately predict pixel-level classifications, it is critical
for breast lesion segmentation methods to highlight lesions
while minimizing confusion with comparable background re-
gions. Customarily, decent context guidance [5], [30] and
focal loss [13], [31] are widely employed to emphasize the
foreground lesions. However, both methods would introduce
false positives due to the unilateral enhancement of foreground
lesions, and an additional auxiliary model is required for the
context guidance. In order to properly highlight lesions under
the assistance of backgrounds, user interaction is introduced to
offer the prior knowledge of the probable lesion regions and
background regions [29]. However, the user interaction will
increase the extra burden for users and diminish application
potential.

Instead of user interaction, we propose a negative-positive
cross-attention network to bilaterally enhance lesions and
backgrounds. The network is denoted as TaiChiNet, which
forms the breast lesion segmentation as a mutual-supervision
task without a human-in-the-loop. While meeting the require-
ment of bilateral enhancement with mutual learning, two facts
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Fig. 3. Illustration of the sub-network U-Net, which is adopted as the
backbone of TaiChiNet.

are essential: 1) independent paths with the potential to uni-
laterally enhance lesions and background; and 2) hierarchical
information interaction between paths. The architecture of
TaiChiNet is illustrated in Fig. 2, which comprises two U-Nets
to unilaterally mine the patterns of lesions and backgrounds.
Given a breast ultrasound image as the input I , the two U-Nets
extract deep features of negative backgrounds Fn and positive
lesions Fp, respectively, which can be defined as follows:

Fn = En(I;W
e
n), (1)

Fp = Ep(I;W
e
p ), (2)

where En and Ep are the encoders of two U-Nets, and W e
n

and W e
p are the encoding parameters, separately.

As the first phase of information interaction between the
deep features Fn andFp, a cross-attention module is designed
to bilaterally enhance Fn and Fp by exploiting their comple-
mentary relationship. The cross-attention module is offered as:

(F
′

n, F
′

p) = CA(Fn, Fp), (3)

where F
′

n and F
′

p denote the enhanced features associated with
backgrounds and lesions, respectively. CA is the abbreviation
for the cross-attention module. Then, F

′

n and F
′

p are fed into
two independent decoders to predict the outputs O

′

n and O
′

p,
which are formulated as :

O
′

n = Dn(F
′

n;W
d
n), (4)

O
′

p = Dp(F
′

p;W
d
p ), (5)

where W d
n and W d

p denote the parameters of decoders Dn and
Dp, respectively.

As the second-phase information interaction between the
shallow features O

′

n and O
′

p, a complementary head including
two MLPs [32]–[34] are applied to fine-tune the information
for the two predictions O

′

n and O
′

p.
The details of the sub-network U-Net, the cross-attention

module, and the MLP are introduced in Sec. III-A, III-B,
and III-C, respectively. As the third phase of information
interaction, a complementary loss will be illustrated in Sec. IV.

A. Sub-network U-Net
To construct a simple yet efficient mutual-learning network,

a lightweight sub-network U-Net [35] is adopted as the back-
bone of TaiChiNet. Due to the symmetrical encoder-decoder

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Feature visualization of the negative and positive paths.(a)-
(d) are four feature maps of the positive path; (e)-(h) are four feature
maps of the negative path. The red-circled region is utilized to represent
the ground truth. The higher value in the color bar means a stronger
response.

structure and skip connection, U-Net can effectively maintain
spatial information and suppress the gradient vanishing. Fig. 3
illustrates the specifics of the sub-network U-Net. The kernel
size of convolution is set to 3 × 3. The kernel size of the
max-pooling operation is 2 × 2, and both the encoder and the
decoder contain five layers. The convolutional layers have 32,
64, 128, 256, and 512 channels, respectively.

B. C2-attention: Channel-to-spatial Cross Attention
In most fields of computer vision, convolution and atten-

tion operations have their own advantages and complement
each other [36]–[38]. The attention mechanism can improve
feature representation using visual grouping [39], [40], which
arranges the symbols on a map to represent distinct classes of
geographical characteristics and focuses on the patterns in one
group while disregarding the patterns in the other groups. Fig.
4 gives the visualization of the visual grouping in the negative
and positive paths, and shows that the symbols on a map are
organized into different groups. From Fig. 4, we can see that:
1) according to the aforementioned analyses, the negative and
positive paths would pay more attention to the normal back-
grounds and the foreground lesions, respectively; 2) the two
paths can both provide the grouped information to infer the
lesion and background regions, separately; and 3) in the binary
classification task of breast lesion segmentation, information
redundancy of deep features exists between different channels
including similar features in each path.

In light of the above observations, the information in-
teraction between the two paths is feasible, and we argue
that a cross-attention module should include the following
characteristics: 1) due to the differences and commonality of
the two paths given in the 1st and 2nd observations, channel
fusion is important for converging their similar structured
information; 2) following the channel fusion, spatial attention
is essential for each path because of the differences shown in
the 1st observation; and 3) in each path, the feature channels
should be compacted to reduce redundancy before feature
fusion as suggested in the 3rd observation.

Accordingly, we build a channel-to-spatial cross-attention
module for segmenting breast lesions in ultrasound images. It
is referred to C2-attention and is different from the traditional
cascaded channel and spatial attentions [41]. The primary
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Fig. 5. Details of the channel-to-spatial cross-attention (C2-attention)
module, where B, C, H and W mean the batch size, number of channels,
height, and width, respectively; and N=H×W. Two blocks ‘1’ in red
represent the connection nodes and the line between them is omitted
for clarity. The two blue blocks ‘2’ have the same representation.

explanation is that, in our C2-attention, the channel fusion
between the two paths serves the subsequent spatial attention
rather than the original features. The architecture of C2-
attention module is given in Fig. 5, where Fn and Fp represent
the deep features of the negative and positive U-Net paths
of Fig. 2. After linear transformation, we obtain the query
Q△, key K△ and value V△, where △ ∈ {n, p}. To reduce
redundancy and meet the requirement of channel fusion, the
channel numbers of key K△ and value V△ are reduced by
half before the cross fusion.

In C2-attention, K is obtained by concatenating Kn and Kp

as (6). Then, we compute the dot products of Qn and Qp with
K and apply the softmax function to generate the correlation
scores Chln and Chlp among channels in each U-Net path.
By another dot product, the correlation scores Chln and Chlp
of channel fusion are weighted to value V , which is obtained
by concatenating Vn and Vp as (7). Then, we get two spatial
attention maps Attn and Attp for the negative and positive
paths, respectively. Finally, the attention maps are added to
the original feature Fn and Fp to enhance their representation
ability. The C2-attention module can be formulated as follow:

K = Concatenate(Kn,Kp), (6)

V = Concatenate(Vn, Vp), (7)

F
′

n = Fn + Softmax(QnK
T )V, (8)

F
′

p = Fp + Softmax(QpK
T )V, (9)

where F
′

n and F
′

p denote the features enhanced by C2-
attention.

C. Complementary Head
At the outputs of the two U-Nets, a complementary head is

further designed to interact with each other. As a lightweight

network, MLP is an option for the complementary head block.
The multi-layer perceptron (MLP) is a simple but competitive
network [43]–[45]. MLP receives a series of linearly projected
feature maps as input, first raises its dimensionality initially
and subsequently decreases it by linear layers.

In the complementary head shown as Fig. 2, two MLPs
block is utilized to build a progressive refinement based on the
complementary information between the negative and positive
paths. The process can be defined as follows:

On = O
′

n +MLP (Ψ(O
′

p);W
m
n ), (10)

and

Op = O
′

p +MLP (Ψ(On);W
m
p ), (11)

where On and Op represent the final output of the negative
and positive paths, respectively; Wm

n and Wm
p denote the

parameters of two MLPs; Ψ means the complement operation
as:

Ψ(A) = 1−A, (12)

where A ∈ {On, O
′

p}

IV. OBJECTIVE FUNCTIONS

To train TaiChiNet, we define three constraints on com-
plementary supervision and lesion segmentation. Given the
negative output On, the positive output Op, the background
ground truth Gn, and the lesion ground truth Gp, the objective
function can be defined as

L = LS(On, Gn) + LS(Op, Gp) + LC(On, Op), (13)

where the background ground truth Gn is the complementary
set of Gp; LS(On, Gn) and LS(Op, Gp) denote the segmen-
tation constraints of backgrounds and lesions, respectively;
and LC(On, Op) represents the complementary loss. The
complementary loss is introduced as the regularization term
to enhance the generalization ability of the model. Next, we
will introduce the constraints in detail.

A. Constraints on Segmentation
Following [5], we adopt a mixed loss that combines the

dice coefficient loss ld and binary cross-entropy loss lb. The
segmentation constraints can be defined as:

LS(On, Gn) = ld(On, Gn) + lb(On, Gn), (14)

LS(Op, Gp) = ld(Op, Gp) + lb(Op, Gp), (15)

where

ld(Ŷ,Y) = 1−
2
∑
(i,j)

Y(i, j)Ŷ(i, j)∑
(i,j)

Y(i, j)2 +
∑
(i,j)

Ŷ(i, j)2,
(16)

lb(Ŷ,Y)=−
∑
(i,j)

(1−Y(i,j))log(1−Ŷ(i,j))+Ŷ(i,j)log(Y(i,j)),

(17)
where (i, j) represents the index of pixels; Ŷ ∈ {On, Op};
and Y ∈ {Gn, Gp}.
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Fig. 6. Illustration of the training strategy of TaiChiNet. The one-shot training preparation based on U-Net++ [42] variant is utilized to provide Ep

and Hp. The One-shot preparation means that Ep and Hp are only mined once per dataset.

(a) (b) (c) 

Fig. 7. Example of easy-to-hard strategy. (a) Ultrasound image. (b)
Easy-part EP of the lesion. (C) Hard-part Hp of the lesion. The red
circle denotes the boundary of the lesion.

B. Constraints on Complementarity
The outputs of the background sub-network and lesion sub-

network are complementary. It means that they should be
consistent with each other after performing the complement
operation as (12). The complementary loss LC(On, Op) is de-
fined based on the error in consistency, which is measured by a
mean-square-error function (MSE). LC(On, Op) is formulated
as :

LC(On, Op) =
∑
(i,j)

1

2
MSE(On(i, j), 1−Op(i, j))+

∑
(i,j)

1

2
MSE(Op(i, j), 1−On(i, j)),

(18)

where (i, j) represents the index of pixels, and MSE is defined
as :

MSE(Â, A) = (Â−A)2 (19)

where A and Â ∈ [0,1].

C. Training Strategy
Inspired by the progressive easy-to-hard learning [18],

which splits targets into easy and hard portions, we design
a progressive training technique to segment the breast lesions.
The training strategy is shown in Fig. 6. Given the easy regions

Ep and the hard regions Hp inside lesions as shown in Fig. 7,
the training technique is also separated into two steps. Ep is
used to warm the network at the first step, whereas the second
one focuses on Hp. The weights are shared in the two steps.
Therefore, (15) is reformulated as

LS(Op, Gp) = L1st

S (Op, Ep, Gp) + L2nd

S (Op, Hp, Gp), (20)

where

L1st

S (Op, Ep, Gp) =ld(Op, Gp) + lb(Op, Gp)+

ld(Op, Ep) + lb(Op, Ep),
(21)

L2nd

S (Op, Hp, Gp) =ld(Op, Gp) + lb(Op, Gp)+

ld(Op, Hp) + lb(Op, Hp),
(22)

where the 1st and 2nd superscripts indicate the 1st step and
the 2nd step, respectively. Additionally, LS(On, Gn) of (14)
is used in both steps, but the complementary loss LC(On, Op)
only works in the 2nd step.

To produce Ep and Hp, a model originated from U-Net++
[42] is applied since U-Net++ is integrated with different
depths CNN and collaborative learning is embodied through
aggregating multi-depth networks and supervising segmenta-
tion heads from each of the constituent networks. The outputs
of U-Net++ may exhibit varying levels of segmentation, with
coarse outputs at the first level and fine outputs at the fourth
level. Therefore, the first-level and the fourth-level outputs are
processed to discover Ep and Hp, respectively. The operation
can be defined as :

Ep = Output(1) ∩GT, (23)

Hp = (Output(4) ∩GT ) ∩ Ep, (24)

where Output(1) and Output(4) denote the first-level and
fourth-level outputs of U-Net++, respectively. GT represents
the ground truth of segmentation, and Ep is Ep’s comple-
mentary set in GT . In the training strategy, the one-shot
preparation refers to the generation of two parts: an easy part
Ep and a hard part Hp using a U-Net++-based model. This
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TABLE I
COMPARISON WITH DIFFERENT MODEL PARTS ON THE BUSI DATA SET. THE BEST VALUES ARE HIGHLIGHTED BY BOLD.

Models Evolution Params DI JA ACC PR SE
Model 1 U-Netp 8.64M 0.758 ± 0.027 0.668 ± 0.022 0.961 ± 0.006 0.771 ± 0.025 0.780 ± 0.023
Model 2 Model 1 + U-Netn 17.28M 0.770 ± 0.012 0.678 ± 0.010 0.965 ± 0.003 0.783 ±0.014 0.801 ± 0.011
Model 3 Model 2 + CLoss 17.28M 0.774 ± 0.020 0.688 ± 0.015 0.966 ± 0.002 0.794 ± 0.016 0.813 ± 0.018
Model 4 Model 2 + CAtt 18.33M 0.791 ± 0.024 0.706 ± 0.014 0.975 ± 0.004 0.826 ± 0.020 0.831 ± 0.023
Model 5 Model 3 + CHead 17.28M 0.808 ± 0.029 0.715 ± 0.019 0.971 ± 0.004 0.819 ± 0.030 0.844 ± 0.023
Model 6 Model 3 + CAtt 18.33M 0.815 ± 0.023 0.724 ± 0.017 0.976 ± 0.005 0.817 ± 0.023 0.852 ± 0.024
Model 7 Model 5 + CHead 18.33M 0.823 ± 0.028 0.737 ± 0.016 0.979 ± 0.004 0.821 ± 0.022 0.865 ± 0.019
TaiChiNet Model 5 + LS 18.33M 0.836 ± 0.024 0.752 ± 0.023 0.986 ± 0.003 0.839 ± 0.027 0.878 ± 0.022

Images Model1 Model2 Model3 Model4 Model5 Model6 Model7 TaiChiNet

Fig. 8. Qualitative analyses among different versions of TaiChiNet. The models are introduced in Sec. V-D. The red circle denotes the boundary
of ground truth.

process is performed only once per dataset, without the need
for continuous updates or retraining. This approach reduces the
complexity of the training session and makes it more practical
for real-world applications.

V. EXPERIMENTS

To demonstrate the effectiveness of TaiChiNet, experiments
are conducted to evaluate the performance of breast lesion seg-
mentation. Two publicly available data sets (i.e., the BUSI data
set [46] and the Dataset B [47]) are employed for training and
testing. Sec. V-A presents introduction of the two datasets. The
implementation details and evaluation metrics are presented in
Sec. V-B and Sec. V-C, separately. The ablation analyses of
model components are illustrated in Sec. V-D. In Sec. V-E
and Sec. V-F, the mutual-learning ways and complementary
heads are explored, respectively. Then, the comparisons with
state-of-the-arts on the two data sets are described in Sec. V-
G. In Sec. V-H, we investigate extended analyses in potential
applications. Sec. V-I provides the qualitative visualization.
Finally, the failure cases are discussed in Sec. V-J.

A. Datasets

The BUSI data set [46] contains 780 images collected from
two types of ultrasound equipment in the Baheya Hospital,
which includes 437 benign cases, 210 malignant cases, and
133 normal cases. The average image size of these images is

500 × 500 pixels. For fairness, the five-fold cross-validation
is performed.

The Dataset B [47], which contains 110 images with benign
lesions and 53 images with malignant lesions, is a public
dataset collected from the UDIAT Diagnostic Center of the
Parc Taulfi Corporation, Sabadell. The average image size is
760 × 570 pixels. The five-fold cross-validation is performed
fairly.

B. Implementation Details

To increase the diversity of image samples, data aug-
mentation is used including rotation (90◦, 180◦, 270◦, and
[−10◦,10◦]), gamma transformation (gamma ∈ [0.5,1.5]), and
shear transformation (rate ∈ [0.6,1.3]). All input images are
resized to 224 × 224, and the intensity of pixels is normalized
to [0, 1]. All the experiments are implemented by Pytorch on
an NVIDIA Geforce RTX 3090 GPU. In the training phase,
an Adam optimizer with an initial learning rate 0.0001 is used
to minimize the objective function. All networks are trained
for 40 epochs, and the batch size is set to 16.

C. Evaluation Metric

To evaluate the segmentation capability of TaiChiNet, we
introduce six widely used metrics, including Jaccard index
(JA), Dice coefficient (DI), Accuracy (ACC), Sensitivity (SE),
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TABLE II
COMPARISON BETWEEN TAICHINET WITH DIFFERENT MUTUAL LEARNING METHODS ON THE BUSI DATASET. CONS-ML AND COMP-ML

REPRESENT CONSISTENT MUTUAL-LEARNING AND COMPLEMENTARY MUTUAL-LEARNING, RESPECTIVELY. THE BEST VALUES ARE HIGHLIGHTED

BY BOLD.

Methods DI JA ACC PR SE
U-Netp 0.758 ± 0.027 0.668 ± 0.022 0.961 ± 0.006 0.771 ± 0.025 0.780 ± 0.023
TaiChiNet w Cons-ML 0.813 ± 0.029 0.731 ± 0.027 0.978 ± 0.005 0.817 ± 0.031 0.843 ± 0.025
TaiChiNet w Comp-ML 0.836 ± 0.024 0.752 ± 0.023 0.986 ± 0.003 0.839 ± 0.027 0.878 ± 0.022

and Precision (PR). They are defined as follows:

JA =
TP

TP + FP + FN
, (25)

DI =
2× TP

2× TP + FP + FN
, (26)

ACC =
TP + TN

TP + FP + FN + TN
, (27)

SE =
TP

TP + FN
, (28)

PR =
TP

TP + FP
(29)

where TP (True Positive) and TN (True Negative) represent the
number of foreground pixels and background pixels correctly
segmented; FP (False Positive) denotes the background pixels
that are incorrectly labeled as the foreground pixels; FN (False
Negative) denotes the foreground pixels that are incorrectly
predicted as the background pixels.

D. Ablation Analyses of Model Components

To demonstrate the effectiveness of different model compo-
nents in TaiChiNet, we conduct an ablation study on the BUSI
data set. In summary, the following models are compared:

Model 1: the positive lesion path with a single U-Net, which
is denoted as U-Netp.

Model 2: on the basis of Model 1, the negative path U-Netn
is added without interaction, and the segmentation results are
calculated by the average value of the outputs of the two paths.

Model 3: the complementary loss (+CLoss) is added in
Model 2.

Model 4: the cross-attention module (+CAtt) is added in
Model 2.

Model 5: the complementary head (+CHead) with two
MLPs is introduced into Model 3.

Model 6: the cross-attention module (+CAtt) is employed
in Model 3.

Model 7: the complementary head (+CHead) with two
MLPs is introduced into Model 5.

TaiChiNet: the designed easy-to-hard learning-strategy
(+LS) is used in Model 7.

The results are listed in Table I. It can be seen that:
• TaiChiNet beats the basic models Model 1 and Model 2

by a large margin. This indicates that introducing complemen-
tary information between the foreground lesions and normal
backgrounds can effectively improve performance.

• Because of the complementary loss, Model 3 outperforms
Model 2. The main reason is that the complementary loss

(a) (b) (c) (d) (e)

Fig. 9. Qualitative analyses of TaiChiNet without and with cross-
attention module. (a) Ultrasound images. (b) Feature maps of TaiChiNet
without cross-attention module. (c) Outputs of TaiChiNet without cross-
attention module. (d) Feature maps enhanced by cross-attention mod-
ule. (e) Outputs of TaiChiNet with cross-attention module. The red circle
denotes the boundary of ground truth.

would act as a regularization term to enhance the model’s
generalization ability.

• Due to the cross-attention module, the performance of
Model 4 is substantially enhanced. It implies that the cross-
attention module can assist the model with information fusion
between the negative and positive paths in the deep features.

• Thanks to the complementary head using two MLPs,
Model 5 outperforms Model 4 on the BUSI data set. It
demonstrates that the complementary information between the
shallow features is also useful for lesion segmentation.

• Benefiting from the easy-to-hard learning strategy,
TaiChiNet further achieves an improvement.

Fig. 8 presents the visualization comparison of TaiChiNet
with different components. We can observe that each compo-
nent of TaiChiNet is beneficial to performance improvement.

Fig. 9 gives the comparison of TaiChiNet without and with
the cross-attention module. It shows that the cross-attention
module can enhance the feature compactness of foreground
lesions and restrains the response of normal backgrounds.

E. Comparative Analyses of Different Mutual-learning
Methods

In this section, we give two kinds of mutual-learning
methods. One is consistent mutual learning between two
paths, which both focus on the foreground lesions. It is used
to demonstrate the effect of simply increasing parameters.
The other one is TaiChiNet with the complementary mutual
learning between the foreground lesions and the normal back-
grounds. The experimental results are listed in Table II. It can
be seen that:

• TaiChiNet with two kinds of mutual-learning methods
both can improve the performance of the lesion segmentation.
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TABLE III
COMPARISON BETWEEN TAICHINET WITH DIFFERENT COMPLEMENTARY HEADS ON THE BUSI DATA SET. THE BEST VALUES ARE HIGHLIGHTED

BY BOLD.

Methods DI JA ACC PR SE
TaiChiNet with (a) 0.821 ± 0.027 0.736 ± 0.019 0.974 ± 0.005 0.844 ± 0.024 0.836 ± 0.025
TaiChiNet with (b) 0.827 ± 0.025 0.743 ± 0.022 0.978 ± 0.006 0.849 ± 0.026 0.854 ± 0.023
TaiChiNet with (c) 0.836 ± 0.024 0.752 ± 0.023 0.986 ± 0.003 0.839 ± 0.027 0.878 ± 0.022

* TaiChiNet with (△) represents TaiChiNet with the head provided in Fig. 10(△), △ ∈ {a, b, c}.

(a)

U-Net

U-Net

Input
Ψ

Ψ

Conv
Conv

(b)

U-Net

U-Net

Input
Ψ

Ψ
MLP

MLP

U-Net

U-Net

Input
Ψ

Ψ

(c)

MLP
MLP

Fig. 10. Examples of different complementary heads: (a) TaiChiNet with Conv-head (O
′
p → On → Op); (b) TaiChiNet with MLP-head (O

′
n →

Op → On); (c) TaiChiNet with MLP-head (O
′
p → On → Op).

TABLE IV
COMPARISONS WITH STATE-OF-THE-ART METHODS FOR BREAST LESION SEGMENTATION ON BUSI DATASET. THE FIRST PART CONTAINS THE

RESULTS WITHOUT NORMAL CASES, WHEREAS THE SECOND PART INCLUDES NORMAL CASES. THE BEST VALUES ARE HIGHLIGHTED BY BOLD.

Methods DI JA ACC PR SE
U-Net [35] 0.725 ± 0.032 0.645 ± 0.031 0.971± 0.004 0.723 ± 0.033 0.779 ± 0.032
U-Net++ [42] 0.737 ± 0.031 0.656 ± 0.030 0.973 ± 0.004 0.735 ± 0.032 0.781 ± 0.032
attention U-Net [48] 0.755 ± 0.030 0.624 ± 0.029 0.973 ± 0.004 0.752 ± 0.031 0.796 ± 0.030
deeplabv3 [49] 0.777 ± 0.027 0.691 ± 0.026 0.974 ± 0.004 0.782 ± 0.027 0.806 ± 0.026
CE-Net [50] 0.753 ± 0.028 0.665 ± 0.028 0.974 ± 0.004 0.767 ± 0.029 0.786 ± 0.02
FAT-Net [51] 0.784 ± 0.025 0.694 ± 0.025 0.974 ± 0.004 0.782 ± 0.025 0.819 ± 0.026
X-Net [52] 0.810 ± 0.026 0.728± 0.024 0.976 ± 0.003 0.808 ± 0.024 0.813 ± 0.020
Wang et al. [53] 0.771 ± 0.028 0.684 ± 0.028 0.973 ± 0.004 0.804 ± 0.030 0.807 ± 0.027
DE-ResUnet [54] 0.763 ± 0.034 0.687 ± 0.019 0.972 ± 0.006 0.771 ± 0.034 0.783 ± 0.025
AAU-Net [55] 0.781 ± 0.025 0.704 ± 0.026 0.974 ± 0.004 0.795 ± 0.023 0.812 ± 0.027
TaiChiNet 0.836 ± 0.024 0.752 ± 0.023 0.986 ± 0.003 0.839 ± 0.027 0.878 ± 0.022
U-Net [35] 0.587 ± 0.016 0.529 ± 0.021 0.959 ± 0.002 0.581 ± 0.012 0.636 ± 0.011
U-Net++ [42] 0.598 ± 0.021 0.545 ± 0.018 0.962 ± 0.003 0.596 ± 0.017 0.641 ± 0.019
attention U-Net [48] 0.603 ± 0.023 0.556 ± 0.037 0.961 ± 0.007 0.612 ± 0.026 0.665 ± 0.034
deeplabv3 [49] 0.623 ± 0.031 0.568 ± 0.025 0.963 ± 0.002 0.627 ± 0.019 0.683 ± 0.024
CE-Net [50] 0.628 ± 0.026 0.576 ± 0.028 0.962 ± 0.004 0.623 ± 0.023 0.667 ± 0.038
FAT-Net [51] 0.631 ± 0.028 0.589 ± 0.031 0.964 ± 0.005 0.635 ± 0.025 0.687 ± 0.032
X-Net [52] 0.651 ± 0.024 0.588 ± 0.025 0.966 ± 0.005 0.655 ± 0.028 0.717 ± 0.029
Wang et al. [53] 0.617 ± 0.026 0.558 ± 0.024 0.964 ± 0.006 0.633 ± 0.024 0.682 ± 0.014
DE-ResUnet [54] 0.619 ± 0.027 0.567 ± 0.027 0.962 ± 0.005 0.626 ± 0.026 0.679 ± 0.025
AAU-Net [55] 0.624 ± 0.024 0.562 ± 0.022 0.964 ± 0.002 0.629 ± 0.021 0.685 ± 0.016
TaiChiNet 0.673 ± 0.027 0.624 ± 0.029 0.969 ± 0.004 0.675 ± 0.026 0.738 ± 0.028

It infers that information interaction is important.
• Specifically, TaiChiNet with complementary information

has the highest performance, confirming once again that com-
plementary information from backgrounds is advantageous for
reducing misunderstanding.

F. Comparative Analyses of Different Complementary
Heads

In this section, the comparative analyses of different com-
plementary heads are conducted. Convolutions and MLPs are
investigated in Fig. 10, and the results are listed in Table III.
It can be observed that TaiChiNet with MLP-head (O

′

p →
On → Op) generally outperforms the others. Thus, the third
architecture of the complementary head is adopted in our
TaiChiNet.

G. Comparison with State-of-the-arts
In this section, we compare TaiChiNet against several deep-

learning-based segmentation methods, including U-Net [35],
U-Net++ [42], attention U-Net [48], deeplabv3 [49], CE-
Net [50], FAT-Net [51], X-Net [52], Wang et al. [53], DE-
ResUnet [54] and AAU-Net [55]. To provide fair comparisons,
we obtain the segmentation results of the compared methods
with the same implementation details and their networks are
retrained on the datasets.

Quantitative comparisons on BUSI. Table IV illustrates
the mean and standard deviation values for TaiChiNet and all
comparison methods on the BUSI dataset. Considering that
normal and lesion ultrasound images are both processed in
clinical breast ultrasound analysis, we conduct two experi-
ments with or without the normal cases of the BUSI dataset in
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TABLE V
COMPARISONS WITH STATE-OF-THE-ART METHODS FOR BREAST LESION SEGMENTATION ON DATASET B. THE FIRST PART LISTS THE RESULTS

WITHIN DATASET B. IN THE SECOND PART, THE MODEL IS TRAINED ON THE BUSI DATASET AND EVALUATED ON DATASET B. THE BEST VALUES

ARE HIGHLIGHTED BY BOLD.

Methods DI JA ACC PR SE
U-Net [35] 0.785 ± 0.027 0.702 ± 0.027 0.975 ±0.002 0.772 ± 0.028 0.835 ± 0.028
U-Net++ [42] 0.789 ± 0.026 0.713 ± 0.025 0.978 ± 0.002 0.788 ± 0.027 0.841 ± 0.026
attention U-Net [48] 0.791 ± 0.024 0.725 ± 0.024 0.984 ± 0.003 0.806 ± 0.023 0.849 ± 0.026
deeplabv3 [49] 0.798 ± 0.018 0.721 ± 0.020 0.989 ± 0.001 0.811 ± 0.020 0.850 ± 0.020
CE-Net [50] 0.813 ± 0.019 0.717 ± 0.021 0.989 ± 0.002 0.821 ± 0.021 0.845 ± 0.022
FAT-Net [51] 0.801 ± 0.024 0.720 ± 0.024 0.984 ± 0.003 0.808 ± 0.024 0.869 ± 0.022
X-Net [52] 0.831 ± 0.017 0.755± 0.024 0.986 ± 0.013 0.834 ± 0.022 0.863 ± 0.025
Wang et al. [53] 0.820 ± 0.021 0.750 ± 0.022 0.986 ± 0.014 0.824 ± 0.025 0.862 ± 0.021
DE-ResUnet [54] 0.796 ± 0.029 0.720 ± 0.025 0.987 ± 0.013 0.808 ± 0.024 0.847 ± 0.024
AAU-Net [55] 0.842 ± 0.018 0.759 ± 0.019 0.989 ± 0.002 0.845 ± 0.019 0.865 ± 0.020
TaiChiNet 0.842 ± 0.024 0.775 ± 0.024 0.990 ± 0.002 0.856 ± 0.023 0.912 ± 0.001
U-Net [35] 0.715 ± 0.028 0.644 ± 0.027 0.979 ± 0.002 0.714 ± 0.031 0.779 ± 0.027
U-Net++ [42] 0.723 ± 0.027 0.647 ± 0.027 0.983 ± 0.002 0.749 ± 0.032 0.784 ± 0.028
attention U-Net [48] 0.734 ± 0.030 0.646 ± 0.028 0.985 ± 0.002 0.722 ± 0.032 0.822 ± 0.028
deeplabv3 [49] 0.737 ± 0.029 0.647 ± 0.028 0.983 ± 0.002 0.744 ± 0.027 0.787 ± 0.029
CE-Net [50] 0.732 ± 0.032 0.643 ± 0.031 0.979 ± 0.002 0.759 ± 0.034 0.788 ± 0.033
FAT-Net [51] 0.748 ± 0.028 0.660 ± 0.028 0.984 ± 0.002 0.755 ± 0.028 0.783 ± 0.029
X-Net [52] 0.776 ± 0.028 0.673 ± 0.026 0.981 ± 0.004 0.765 ± 0.027 0.796 ± 0.023
Wang et al. [53] 0.782 ± 0.031 0.664 ± 0.030 0.981 ± 0.002 0.771 ± 0.034 0.801 ± 0.029
DE-ResUnet [54] 0.735 ± 0.024 0.646 ± 0.026 0.981 ± 0.005 0.757 ± 0.028 0.785 ± 0.021
AAU-Net [55] 0.781 ± 0.026 0.670 ± 0.021 0.983 ± 0.004 0.775 ± 0.022 0.796 ± 0.012
TaiChiNet 0.792 ± 0.024 0.696 ± 0.025 0.985 ± 0.002 0.787 ± 0.002 0.840 ± 0.023

TABLE VI
COMPARISONS WITH STATE-OF-THE-ART METHODS FOR THYROID NODULE SEGMENTATION ON TN-SCUI2020. THE BEST VALUES ARE

HIGHLIGHTED BY BOLD.

Methods DI JA ACC PR SE
U-Net [35] 0.835 ± 0.018 0.754 ± 0.025 0.972 ± 0.004 0.830 ± 0.020 0.869 ± 0.019
U-Net++ [42] 0.838 ± 0.020 0.765 ± 0.021 0.973 ± 0.003 0.833 ± 0.018 0.873 ± 0.019
attention U-Net [48] 0.847 ± 0.018 0.775 ± 0.004 0.974 ± 0.002 0.845 ± 0.020 0.880 ± 0.015
deeplabv3 [49] 0.854 ± 0.013 0.787 ± 0.019 0.976 ± 0.003 0.854 ± 0.019 0.881 ± 0.017
CE-Net [50] 0.850 ± 0.018 0.785 ± 0.020 0.976 ± 0.002 0.861 ± 0.017 0.877 ± 0.017
FAT-Net [51] 0.854 ± 0.016 0.795 ± 0.019 0.979 ± 0.002 0.863 ± 0.017 0.880 ± 0.016
Wang et al. [53] 0.849 ± 0.017 0.763 ± 0.020 0.975 ± 0.003 0.842 ± 0.019 0.881 ± 0.019
AAU-Net [55] 0.845 ± 0.018 0.761 ± 0.020 0.975 ± 0.004 0.848 ± 0.018 0.879 ± 0.018
TaiChiNet 0.885 ± 0.019 0.805 ± 0.002 0.984 ± 0.003 0.881 ± 0.013 0.908 ± 0.019

the training and test phase, respectively. The first part contains
the results without normal cases, whereas the second part
includes normal cases. It can be observed as:

• Compared with other segmentation methods on BUSI
without normal cases, the performance of our proposed
TaiChiNet improves on all five metrics. It demonstrates that
TaiChiNet including complementary information can discrim-
inate breast lesions from backgrounds more accurately than
all competitors.

• When normal cases are included, TaiChiNet has the
highest segmentation performance. The main reason would be
that the normal-background path limits false positives to some
degree.

Quantitative comparisons on Dataset B. The first part
of Table V lists the comparison results on Dataset B. In the
second part of Table V, cross-validation between BUSI and
Dataset B, i.e., the model trained on BUSI and evaluated on
Dataset B, is used to evaluate the generalization capacity fur-
ther. We can see that TaiChiNet still achieves top performance.
Due to the mutual-learning mechanism, TaiChiNet obtains a
competitive performance of domain adaptation.

H. Extended Analyses in Potential Applications
To illustrate the potential value of TaiChiNet, we apply it

on the ultrasound thyroid nodule segmentation of the TN-
SCUI2020 dataset 3and retinal optic cup/disc segmentation of
the REFUGE dataset 4. Considering that the ground truth of
the test set on the TN-SCUI2020 dataset is not available, we
randomly selected 20% of the training data as the test set. It is
subjected to five-fold cross-validation to ensure fairness. The
REFUGE dataset provides predefined partitions with 400, 400,
and 400 for training, validation, and testing, respectively.

Comparison results on TN-SCUI2020. Table VI lists the
comparison results between TaiChiNet and the competitors. It
can be seen that TaiChiNet obtains the best segmentation per-
formance, which demonstrates that TaiChiNet can distinguish
thyroid nodules from ultrasound pictures efficiently.

Comparison results on REFUGE. Table VII presents the
comparison results of the optic disc and cup segmentation.
Again, compared to other segmentation methods, TaiChiNet
delivers performance benefits.

3https://tn-scui2020.grand-challenge.org/
4https://refuge.grand-challenge.org/.
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TABLE VII
COMPARISONS WITH STATE-OF-THE-ART METHODS FOR RETINAL OPTIC CUP AND DISC SEGMENTATION ON REFUGE. THE BEST VALUES ARE

HIGHLIGHTED BY BOLD.

Methods DI (disc) JA (disc) DI (cup) JA (cup)
U-Net [35] 0.939 ± 0.002 0.906 ± 0.003 0.876 ± 0.003 0.781 ± 0.004
U-Net++ [42] 0.942 ± 0.008 0.910 ± 0.007 0.878 ± 0.006 0.790 ± 0.005
attention U-Net [48] 0.945 ± 0.005 0.918 ± 0.006 0.862 ± 0.002 0.798 ± 0.006
deeplabv3 [49] 0.952 ± 0.002 0.926 ± 0.009 0.872 ± 0.005 0.796 ± 0.008
CE-Net [50] 0.946 ± 0.006 0.917 ± 0.007 0.861 ± 0.006 0.793 ± 0.009
FAT-Net [51] 0.951 ± 0.004 0.919 ± 0.006 0.868 ± 0.005 0.798 ± 0.008
Wang et al. [53] 0.957 ± 0.013 0.918 ± 0.012 0.859 ± 0.018 0.801 ± 0.015
AAU-Net [55] 0.962 ± 0.019 0.927 ± 0.034 0.887 ± 0.034 0.802 ± 0.019
TaiChiNet 0.974 ± 0.001 0.941 ± 0.003 0.898 ± 0.006 0.839 ± 0.007

Images U-Net U-Net++

attention 

U-Net deeplabv3 CE-Net FAT-Net AAU-Net TaiChiNet

Fig. 11. Qualitative visualization. The first line is the segmentation results on BUSI dataset. The second line is the segmentation results on Dataset
B. The third line is the segmentation results on TN-SCUI2020. The red circle denotes the boundary of ground truth.

I. Qualitative Visualization
The qualitative visualization on the BUSI, Dataset B, and

TN-SCUI2020 datasets is illustrated in Fig. 11. It can be seen
that TaiChiNet outperforms all competitors. Compared to FAT-
Net, which employs both a transformer encoder and CNN
encoder, TaiChiNet can distinguish between the foreground
and background more precisely and generates more accurate
segmentation results. The main reason is that TaiChiNet
employs a cross-attention mechanism, which could aid in
preventing TaiChiNet from being confused by background
distractions.

J. Discussion about failure cases
We will discuss two scenarios in which the performance of

TaiChiNet will be weakened: 1) in the first row of Fig. 12,
large lesions with very extremely similar appearances to nor-
mal backgrounds; 2) in the second row of Fig. 12, large lesions
with contradictory information compared to typical samples.
The former situation would lead to false negatives. In the latter
one, the lesions and backgrounds are about proportional, and
the black regions are normal backgrounds. In several samples,
lesions often take the attribute of black regions. Therefore,
TaiChiNet provides an opposite prediction outcome in the
latter situation. In the future, we will introduce sample-level
curriculum learning to deal with these hard samples. The

objective of the sample-level learning curriculum is to train
a deep learning model with data of progressively increasing
complexity. Since the model has already been trained using
basic examples, there are greater opportunities to improve its
performance when presented with complex data [18].

(a) (b) (c) (d) 

Fig. 12. Failure cases. (a) Ultrasound images. (b) Features in the
negative path. (c) Features in the positive path. (d) The predicted
outputs. The red circle denotes the boundary of ground truth, and the
regions of ground truth are highlighted.

VI. CONCLUSION

In an effort to improve breast lesion segmentation by
reducing false positives in the normal background and false
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negatives in the foreground lesions, we propose a negative-
positive cross-attention network to simultaneously enhance
the segmentation performance of the normal background
and the foreground lesions. The network is designated as
TaiChiNet, which is derived from the complementing oppo-
sites of bipolarity in TaiChi. TaiChiNet models the task of
breast lesion segmentation as a mutual-learning task via multi-
level information interactions at the deep-feature layer, the
shallow-feature layer, and the supervision. For the multi-level
information interactions, a channel-to-spatial cross-attention, a
complimentary head, and a complementary loss are designed
accordingly. In addition, taking into account the varying seg-
mentation difficulties of pixels within foreground lesions, we
introduce a pixel-level easy-to-hard learning strategy to assist
model learning in the training phase for further performance
gains. Experimental results demonstrate the effectiveness of
TaiChiNet in breast lesion segmentation. Future research will
focus on reducing false positives and false negatives in a
variety of prospective applications.
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M. Böhm-Vélez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton
et al., “Combined screening with ultrasound and mammography vs
mammography alone in women at elevated risk of breast cancer,” Jama,
vol. 299, no. 18, pp. 2151–2163, 2008.

[3] W. A. Berg, Z. Zhang, D. Lehrer, R. A. Jong, E. D. Pisano, R. G. Barr,
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